Марки жаропрочных сталей – подробное описание жаростойких сплавов Видео

2 Жаропрочные сплавы и стали – что они собой представляют?

Окалиностойкость, иначе называемая жаростойкостью, представляет собой способность тех или иных сплавов либо металлов противостоять на протяжении длительного времени при повышенных температурах газовой коррозии. А под жаропрочностью понимают способность металлических материалов не поддаваться разрушению и пластической деформации при высоких температурных режимах работы.

Ненагруженные конструкции, которые применяются при температурах в районе 550 °С в газовой окислительной атмосфере, обычно изготавливаются из жаростойких металлов. К указанным изделиям часто относят элементы нагревательных печей. Сплавы на базе железа при температурах выше указанных 550 градусов склонны к активному окислению, в результате коего на их поверхности формируется оксид феррума.

Они способны создавать с кислородом совершенно другие решетки – с очень плотным и надежным строением. Уровень легированности композиции (количество требуемых добавок) подбирают с учетом температуры, при которой планируется применять изделие, изготовленные из него.

Максимальная жаростойкость присуща материалам на базе никеля (сильхромам). К таковым, в частности, относят следующие марки стали:

  • 36Х18Н25С2;
  • 15Х25Т;
  • 08Х17Т;
  • 15Х6СЮ.

Вообще, жаростойкость сталей будет тем выше, чем больше в них имеется хрома. Некоторые марки стальных композиций способны без ухудшения своих начальных свойств работать даже при температурах в районе 1150 °С.

Марки таких сталей идеальны для производства изделий, функционирующих в условиях, когда присутствует явление ползучести и, естественно, повышенные температуры. Ползучестью называют склонность металла к медленной деформации (пластической) при неизменной температуре под влиянием постоянной нагрузки.

Жаропрочность сплавов зависит от вида имеющейся ползучести, которая может быть:

  • длительной;
  • кратковременной.

Последняя устанавливается в ходе специально проводимых анализов на растяжение изделий. Обследования осуществляются в течение непродолжительного времени при заранее заданной температуре в нагревательной печи.

А длительная ползучесть определяется, как вы сами понимаете, на протяжении большего времени воздействия на сталь. И в данном случае главное значение имеет величина предела ползучести – наибольшее напряжение, вызывающее разрушение испытуемого изделия при конкретном времени воздействия и температуре.

По состоянию своей структуры такие сплавы бывают:

  • мартенситно-ферритными;
  • перлитными;
  • аустенитными;
  • мартенситными.

А жаростойкие сплавы дополнительно подразделяются еще на:

  • аустенитно-ферритные или мартенситные;
  • ферритные.

Известны следующие марки мартенситных сталей:

  • 3Х13Н7С2 и 4Х9С2 (используются при температурах 850–950° в клапанах автодвигателей);
  • Х5М, 1Х12H2ВМФ, 1Х8ВФ, Х6СМ, Х5ВФ (применяются для производства узлов и разнообразных деталей, работающих в течение 1000–10000 часов при температурах от 500 до 600°);
  • Х5 (из них делают трубы для использования при температурах не более 650°);
  • 1Х8ВФ (применяются для изготовления компонентов паровых турбин, функционируют без потери свойств в течение 10000 часов и более при температуре до 500°).

Мартенситные сплавы получаются из перлитных при повышении в последних количества хрома. Непосредственно к перлитным относят следующие жаростойкие и жаропрочные стали: Х13Н7С2, Х7СМ, Х9С2, Х10С2М, Х6СМ, Х6С (то есть все виды хромомолибденовых и хромокремнистых составов). Их закаливают при температурах 950–1100 градусов, а затем (при 8100 градусах) выполняют отпуск стали, что позволяет получить твердые материалы (по шкале HRC – не менее 25 единиц) со структурой сорбита.

Жаростойкие ферритные стали имеют мелкозернистую структуру после их отжига и термообработки. В таких композициях присутствует от 25 до 33 процентов хрома. Используются они для пиролизного оборудования и теплообменников. К ферритным сталям относят далее указанные марки: Х28, Х18СЮ, Х17, Х25Т, 0Х17Т, 1Х12СЮ. Отметим, что их нельзя нагревать более 850 градусов, так как в этом случае изделия станут хрупкими за счет своей крупнозернистой структуры.

Мартенситно-ферритные сплавы хорошо зарекомендовали себя при производстве машиностроительных деталей, которые планируется использовать при 600° на протяжении существенного времени. Такие жаропрочные стали (1Х13, 1Х12В2МФ, 1Х12ВНМФ, Х6СЮ, 2Х12ВМБФР, 1Х11МФ) легируются молибденом, вольфрамом, ванадием, а хрома в них, как правило, содержится от 10 до 14 процентов.

Указанные сплавы, жаростойкость и жаропрочность которых очень высока, имеют в своем составе свыше 55 % никеля и более 65 % комплекса никель железо. Базовым элементом в обоих видах композиций при этом является хром (его содержится от 14 до 23 %).

Более высокие показатели стойкости и прочности при повышенных температурах демонстрируют стали на основе никеля: ХН60В, ХН75МБТЮ, ХН60Ю, ХН78Т (жаропрочные) и ХН77ТЮ, ХН70МВТЮБ, ХН70ВМЮ, ХН70, ХН67ВМТЮ (жаростойкие). Обусловлен сей факт процессом формирования на их поверхности при высоких температурах оксидной алюминиевой и хромовой пленки, а также (в твердых растворах) – соединений алюминия и никеля, титана и никеля.

В никелевых сплавах из-за несущественного содержания в них углерода никогда не появляются карбиды. А их упрочнение – это последствие твердения, характеризуемого дисперсной природой, после выполнения термообработки. Под такой обработкой понимают:

  • создание твердой однородной композиции никеля и легирующих добавок;
  • следующее за этим старение металла (температура процесса – около 750 градусов, иногда — 800).

В процессе распада твердого пересыщенного состава формируются металлические упрочняющие компоненты, которые существенно увеличивают показатель жаропрочности стали и ее сопротивляемость деформациям.

Назначение и марки сталей с никелем, с никелем и железом:

  • составляющие газовых конструкций – ХН35ВМТЮ;
  • элементы турбин – ХН35ВТР;
  • диски и лопатки компрессоров – ХН35ВТЮ;
  • роторы турбин – ХН35ВТ, ХН35ВМТ.

4 Аустенитно-ферритные и аустенитные жаростойкие сплавы

Наибольшей востребованностью пользуются аустенитные стали, структура коих обеспечивается наличием никеля, а жаростойкость – наличием хрома. В подобных композициях иногда встречаются незначительные включения ниобия и титана, углерода в них очень мало. Аустенитные марки при температурах до 1000° успешно противостоят процессу появления окалины и при этом относятся к группе антикоррозионных сталей.

Сейчас чаще всего предприятия используют описываемые материалы, относимые к дисперсионно-твердеющей категории. Их делят на два вида в зависимости от варианта применяемого упрочнителя – интерметаллического либо карбидного. Именно процедура упрочнения придает аустенитным сталям особые свойства, так востребованные промышленностью. Известные сплавы данной группы:

  • дисперсионно-твердеющие: 0Х14Н28В3Т3ЮР, Х12Н20Т3Р, 4Х12Н8Г8МФБ, 4Х14Н14В2М (оптимальны для изготовления клапанов двигателей транспортных средств и деталей турбин);
  • гомогенные: 1Х14Н16Б, Х25Н20C2, Х23Н18, Х18Н10T, Х25Н16Г7АР, Х18Н12T, 1Х14Н18В2Б (указанные марки находят свое применение в сфере выпуска арматуры и труб, работающих при больших нагрузках, элементов выхлопных систем, агрегатов сверхвысокого давления).

Аустенитно-ферритные сплавы имеют очень высокую жаропрочность, которая намного больше обычных высокохромистых материалов. Достигается это за счет уникальной стабильности их строения. Такие марки стали нельзя применять для производства нагруженных компонентов из-за их повышенной хрупкости. Зато они прекрасно подходят для изготовления изделий, функционирующих при температурах близких к 1150 °С:

  • пирометрических трубок (марка – Х23Н13);
  • печных конвейеров, труб, емкостей для цементации (Х20Н14С2 и 0Х20Н14С2).

5 Тугоплавкие сплавы и металлы

В тех случаях, когда требуется изготовить детали, которые смогут применяться при температурах от 1000 до 2000 градусов, используются стали на основе тугоплавким металлов. К ним относят элементы, характеризуемые следующими температурами плавления (в градусах):

  • 3410 – вольфрам;
  • около 3000 – тантал;
  • 2415 – ниобий;
  • 1900 – ванадий;
  • 1855 – цирконий;
  • 3180 – рений;
  • около 2600 – молибден;
  • почти 2000 – гафний.

Данные металлы деформируются (пластически) при нагреве, что обусловлено высокой температурой их изменения в хрупкое состояние. При нагреве до величин рекристаллизации формируется волокнистая структура тугоплавких металлов и наклеп. Показатель жаропрочности таких материалов обычно увеличивают привнесением специальных добавок.

Часто используются тугоплавкие сплавы с такими составами:

  • 30 % рения вольфрам;
  • 40 % ниобия 60 % ванадия;
  • 48 % железа 1 % циркония 5 % молибдена 15 % ниобия;
  • 10 % вольфрама тантал.
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock detector